z-logo
Premium
Integrated Approaches of X‐Ray Absorption Spectroscopic and Electron Microscopic Techniques on Zinc Speciation and Characterization in a Final Sewage Sludge Product
Author(s) -
Kim Bojeong,
Levard Clément,
Murayama Mitsuhiro,
Brown Gordon E.,
Hochella Michael F.
Publication year - 2014
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq2013.10.0418
Subject(s) - sewage sludge , x ray absorption spectroscopy , zinc , dissolution , environmental chemistry , extended x ray absorption fine structure , materials science , chemistry , sewage treatment , absorption spectroscopy , metallurgy , environmental science , environmental engineering , physics , quantum mechanics
Integration of complementary techniques can be powerful for the investigation of metal speciation and characterization in complex and heterogeneous environmental samples, such as sewage sludge products. In the present study, we combined analytical transmission electron microscopy (TEM)‐based techniques with X‐ray absorption spectroscopy (XAS) to identify and characterize nanocrystalline zinc sulfide (ZnS), considered to be the dominant Zn‐containing phase in the final stage of sewage sludge material of a full‐scale municipal wastewater treatment plant. We also developed sample preparation procedures to preserve the organic and sulfur‐rich nature of sewage sludge matrices for microscopic and spectroscopic analyses. Analytical TEM results indicate individual ZnS nanocrystals to be in the size range of 2.5 to 7.5 nm in diameter, forming aggregates of a few hundred nanometers. Observed lattice spacings match sphalerite. The ratio of S to Zn for the ZnS nanocrystals is estimated to be 1.4, suggesting that S is present in excess. The XAS results on the Zn speciation in the bulk sludge material also support the TEM observation that approximately 80% of the total Zn has the local structure of a 3‐nm ZnS nanoparticle reference material. Because sewage sludge is frequently used as a soil amendment on agricultural lands, future studies that investigate the oxidative dissolution rate of ZnS nanoparticles as a function of size and aggregation state and the change of Zn speciation during post sludge‐processing and soil residency are warranted to help determine the bioavailability of sludge‐born Zn in the soil environment.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here