z-logo
Premium
Nutrient Variation in an Urban Lake Chain and its Consequences for Phytoplankton Production
Author(s) -
Roach W. John,
Grimm Nancy B.
Publication year - 2009
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq2008.0191
Subject(s) - groundwater , phytoplankton , environmental science , hydrology (agriculture) , nutrient , biogeochemistry , ecosystem , streams , nitrate , food chain , ecology , geology , biology , computer network , geotechnical engineering , computer science
In the Central Arizona–Phoenix (CAP) ecosystem, managers divert mixed stream water and groundwater to maintain an artificial lake chain in Indian Bend Wash (IBW), a historically flashy, ephemeral, desert stream. Nutrient concentrations in the CAP ecosystem's groundwater, stream water, and floodwater differ: stream water has low concentrations of both inorganic N and P, while groundwater is low in inorganic P but rich in nitrate (NO 3 − ). Consequently, groundwater contribution drives inorganic N concentrations in the lake chain. In contrast, floodwater typically has high P concentrations while remaining low in N. Thus we expected N and P concentrations in IBW lakes to vary with the mix of water flowing through them. Elevated NO 3 − and low inorganic P concentrations were predicted when groundwater pumping was pronounced and this prediction was supported. We hypothesized that these predictable changes in water chemistry would affect nutrient limitation of phytoplankton. Laboratory nutrient‐addition bioassays demonstrated that phytoplankton growth was P‐limited throughout the summer of 2003 when N/P was high. However, after a late‐season flood drove N/P below 31:1, the expected threshold between N and P limitation, N limitation was observed. Our results indicate that effects of floods, the preeminent historic drivers of Sonoran Desert stream biogeochemistry, are mitigated in urban ecosystems by decisions about which spigots to turn. Consequently, nutrient limitation of urban streams is driven as much by management decisions as by natural hydrologic variation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here