z-logo
Premium
Content and Binding Forms of Heavy Metals, Aluminium and Phosphorus in Bog Iron Ores from Poland
Author(s) -
Kaczorek Danuta,
Brümmer Gerhard W.,
Sommer Michael
Publication year - 2009
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq2008.0125
Subject(s) - bog , environmental chemistry , chemistry , soil water , metal , peat , phosphorus , extraction (chemistry) , heavy metals , geology , soil science , ecology , biology , organic chemistry , chromatography
Bog iron ores are widespread in Polish wetland soils used as meadows or pastures. They are suspected to contain high concentrations of heavy metals, which are precipitated together with Fe along a redox gradient. Therefore, soils with bog iron ore might be important sources for a heavy metal transfer from meadow plants into the food chain. However, this transfer depends on the different binding forms of heavy metals. The binding forms were quantified by sequential extraction analysis of heavy metals (Fe, Mn, Cr, Co, Ni, Cd, Pb) as well as Al and P on 13 representative samples of bog iron ores from central and southwestern Poland. Our results showed total contents of Cr, Co, Ni, Zn, Cd, and Pb not to exceed the natural values for sandy soils from Poland. Only the total Mn was slightly higher. The highest contents of all heavy metals have been obtained in iron oxide fractions V (occluded in noncrystalline and poorly crystalline Fe oxides) and VI (occluded in crystalline Fe oxides). The results show a distinct relationship between the content of Fe and the quantity of Zn and Pb as well P. Water soluble as well as plant available fractions were below the detection limit in most cases. From this we concluded bog iron ores not to be an actual, important source of heavy metals in the food chain. However, a remobilization of heavy metals might occur due to any reduction of iron oxides in bog iron ores, for example, by rising groundwater levels.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here