z-logo
Premium
Can Urban Tree Roots Improve Infiltration through Compacted Subsoils for Stormwater Management?
Author(s) -
Bartens Julia,
Day Susan D.,
Harris J. Roger,
Dove Joseph E.,
Wynn Theresa M.
Publication year - 2008
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq2008.0117
Subject(s) - subsoil , infiltration (hvac) , environmental science , groundwater recharge , stormwater , loam , surface runoff , hydrology (agriculture) , emerald ash borer , soil water , groundwater , soil science , aquifer , geology , fraxinus , ecology , geography , geotechnical engineering , meteorology , biology
Global land use patterns and increasing pressures on water resources demand creative urban stormwater management. Strategies encouraging infiltration can enhance groundwater recharge and water quality. Urban subsoils are often relatively impermeable, and the construction of many stormwater detention best management practices (D‐BMPs) exacerbates this condition. Root paths can act as conduits for water, but this function has not been demonstrated for stormwater BMPs where standing water and dense subsoils create a unique environment. We examined whether tree roots can penetrate compacted subsoils and increase infiltration rates in the context of a novel infiltration BMP (I‐BMP). Black oak ( Quercus velutina Lam.) and red maple ( Acer rubrum L.) trees, and an unplanted control, were installed in cylindrical planting sleeves surrounded by clay loam soil at two compaction levels (bulk density = 1.3 or 1.6 g cm − 3 ) in irrigated containers. Roots of both species penetrated the more compacted soil, increasing infiltration rates by an average of 153%. Similarly, green ash ( Fraxinus pennsylvanica Marsh.) trees were grown in CUSoil (Amereq Corp., New York) separated from compacted clay loam subsoil (1.6 g cm − 3 ) by a geotextile. A drain hole at mid depth in the CUSoil layer mimicked the overflow drain in a stormwater I‐BMP thus allowing water to pool above the subsoil. Roots penetrated the geotextile and subsoil and increased average infiltration rate 27‐fold compared to unplanted controls. Although high water tables may limit tree rooting depth, some species may be effective tools for increasing water infiltration and enhancing groundwater recharge in this and other I‐BMPs (e.g., raingardens and bioswales).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here