z-logo
Premium
Microbial Biomass Governs Enzyme Activity Decay during Aging of Worm‐Worked Substrates through Vermicomposting
Author(s) -
Aira Manuel,
Monroy Fernando,
Domínguez Jorge
Publication year - 2007
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq2006.0262
Subject(s) - vermicompost , cellulase , biomass (ecology) , chemistry , food science , alkaline phosphatase , enzyme , enzyme assay , organic matter , agronomy , zoology , biology , biochemistry , nutrient , organic chemistry
Vermicomposting is the biooxidation and stabilization of organic matter involving the joint action of earthworms and microorganisms, thereby turning wastes into a valuable soil amendment called vermicompost. Studies have focused on the changes in the type of substrates available before and after vermicomposting, but little is known on how these changes take place, especially those changes related with maturation of vermicompost. This study investigated the effects of aging on the microbiological properties of fresh vermicompost produced from pig slurry by analyzing the substrate after the earthworms had left it. We incubated 16‐wk‐old vermicompost and sampled it after 15, 30, 45, and 60 d analyzing microbial biomass and activity (assessed as microbial biomass N and basal respiration respectively) and four enzymatic activities (β‐glucosidase, cellulase, protease, and alkaline phosphatase). Aging of vermicompost resulted in decreases of microbial biomass and activity. Three of the four enzymes analyzed also showed decrease. An initial increase followed by a rapid decrease in alkaline phosphatase was also recorded. High and significant correlations between microbial biomass and β‐glucosidase ( r = 0.62, P < 0.001), cellulase ( r = 0.56, P < 0.01), and protease ( r = 0.82, P < 0.001) were found. Results suggest that there may be two steps involved in the aging dynamics of vermicompost with regards to extracellular enzyme activity; the first step was characterized by a decrease in microbial populations, which resulted in a reduction in the synthesis of new enzymes. The second step was the degradation of the pool of remaining enzymes. This dynamic does not seem to be affected by earthworms because similar decaying patterns of microbial biomass and activity were found in substrate where earthworms were present.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here