Premium
Theoretical Comparison of How Soil Processes Affect Uptake of Metals by Diffusive Gradients in Thinfilms and Plants
Author(s) -
Lehto N. J.,
Davison W.,
Zhang H.,
Tych W.
Publication year - 2006
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq2005.0422
Subject(s) - diffusive gradients in thin films , soil water , chemistry , environmental chemistry , metal , desorption , diffusion , flux (metallurgy) , adsorption , soil science , environmental science , physics , organic chemistry , thermodynamics
ABSTRACT The theoretical basis for using measurements of metal uptake by the technique of diffusive gradients in thinfilms (DGT) to mimic processes in soils that affect uptake of metals by plants is examined. The uptake of metals by plants and DGT were compared conceptually and quantitatively by using the classic Barber model of plant uptake and the DIFS (DGT‐induced fluxes in soils) model of uptake by DGT. For most metals and plants considered, uptake fluxes were similar to those induced by DGT using the most common gel layer thicknesses of 0.2 to 2mm. Consequently DGT perturbs the chemical equilibrium of metals in the soil solution and between soil solution and solid phase, to a similar extent to plants, and therefore induces a similar balance in supply by diffusion and by release from the solid phase. DIFS was used to show that desorption kinetics, which are not considered by the plant uptake model, are likely important for uptake when the capacity of the soil solid phase is large. Model calculations showed that mass flow into a plant root would only contribute appreciably to the total flux of metal under circumstances when the solid phase reservoir of metal was very low. Generally, however, DGT is likely to emulate supply processes from the soil that govern uptake of metal by plants. Exceptions are likely to be found in poorly buffered soils (typically sandy and/or low pH), and at very high concentrations of metals in soil solution, such that the soil solution concentration at the plant root interface is higher than the Michaelis‐Menten constant ( K m ).