Premium
Simulating Urban Waste Compost Effects on Carbon and Nitrogen Dynamics Using a Biochemical Index
Author(s) -
Gabrielle Benoît,
DaSilveira Jeanne,
Houot Sabine,
Francou Cédric
Publication year - 2004
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq2004.2333
Subject(s) - compost , mineralization (soil science) , organic matter , loam , manure , environmental science , soil carbon , nitrogen , soil organic matter , green waste , total organic carbon , biodegradable waste , soil water , soil science , agronomy , chemistry , environmental chemistry , waste management , engineering , biology , organic chemistry
Composting has emerged as a valuable route for the disposal of urban waste, with the prospect of applying composts on arable fields as organic amendments. Proper management of urban waste composts (UWCs) requires a capacity to predict their effects on carbon and nitrogen dynamics in the field, an issue in which simulation models are expected to play a prominent role. However, the parameterization of soil organic amendments within such models generally requires laboratory incubation data. Here, we evaluated the benefit of using a biochemical index based on Van Soest organic matter fractions to parameterize a deterministic model of soil C and N dynamics, NCSOIL, as compared with a standard alternative based on laboratory incubation data. The data included C mineralization and inorganic N dynamics in samples of a silt loam soil (Typic Hapludalf) mixed with various types of UWC and farmyard manure. NCSOIL successfully predicted the various nitrogen mineralization–immobilization patterns observed, but underestimated CO 2 release by 10 to 30% with the less stable amendments. The parameterization based on the biochemical index achieved a prediction error significantly larger than the standard parameterization in only 10% of the tested cases, and provided an acceptable fit to experimental data. The decomposition rates and C to N ratios of compost organic matter varied chiefly according to the type of waste processed. However, 62 to 66% of their variance could be explained by the biochemical index. We thus suggest using the latter to parameterize organic amendments in C and N models as a substitute for time‐consuming laboratory incubations.