Premium
Combined Effect of Natural Organic Matter and Surfactants on the Apparent Solubility of Polycyclic Aromatic Hydrocarbons
Author(s) -
Cho HyunHee,
Choi Jaeyoung,
Goltz Mark N.,
Park JaeWoo
Publication year - 2002
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq2002.2750
Subject(s) - solubility , phenanthrene , chemistry , pulmonary surfactant , aqueous solution , pyrene , naphthalene , hydrocarbon , organic chemistry , environmental chemistry , biochemistry
Both natural organic matter (NOM) and surfactants are known to enhance the apparent aqueous solubility of hydrophobic organic contaminants (HOCs) in aqueous systems. In this study, the combined effect of NOM and surfactants on enhancing the solubility of HOCs was investigated, since both may occur and affect the fate and transport of HOCs in natural aqueous environments. Experimental results indicated that the apparent solubility of naphthalene, phenanthrene, and pyrene in NOM and anionic surfactant solution was lower than their solubility in NOM solution alone. However, the apparent solubility of an HOC in NOM and nonionic surfactant solution is almost the same as the sum of the HOC's solubility in NOM solution plus its solubility in nonionic surfactant solution. The observation that apparent aqueous solubility of HOCs in NOM and anionic surfactant solution is decreased is probably due to the fact that the cations that are released when the anionic surfactant dissociates may form ion pairs with acidic or phenolic groups associated with the NOM. This serves to increase the size of hydration of these groups, thereby decreasing the effective size of the nonpolar moieties associated with the NOM, and thus decreasing hydrophobic partitioning of the HOCs into the NOM. The results presented here will help us to understand the effect of NOM and surfactants on the fate and transport of HOCs in aquatic systems.