Premium
Potential of Enterococcus faecalis as a Human Fecal Indicator for Microbial Source Tracking
Author(s) -
Wheeler Andrea L.,
Hartel Peter G.,
Godfrey Dominique G.,
Hill Jennifer L.,
Segars William I.
Publication year - 2002
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq2002.1286
Subject(s) - enterococcus faecalis , feces , biology , microbiology and biotechnology , ribotyping , fecal coliform , human feces , enterococcus , source tracking , host (biology) , bacteria , veterinary medicine , antibiotics , ecology , medicine , staphylococcus aureus , polymerase chain reaction , biochemistry , world wide web , gene , computer science , water quality , genetics
Regulatory agencies are interested in a fecal indicator bacterium with a host range limited to humans because human fecal contamination represents the greatest hazard to humans, yet is a relatively easy nonpoint source to remedy. Watersheds with human fecal contamination could be given first priority for cleanup. A fecal indicator bacterium with a host range limited to humans and a few other warm‐blooded animal species would also simplify microbial source tracking because only a few animal species would be required for any host origin database. The literature suggests that the fecal indicator bacterium Enterococcus faecalis has a limited host range. On this basis, we selected this bacterium for study. Of 583 fecal streptococcal isolates obtained on Enterococcosel agar from Canada goose, cattle, deer, dog, human, chicken, and swine, 392 were considered presumptive enterococci and were subsequently speciated with the API 20 Strep system. Of these isolates, 22 were Ent. durans (5.6%), 61 were Ent. faecalis (15.6%), 98 were Ent. faecium (25.0%), 86 were Ent. gallinarum (21.9%), and 125 were unidentified (31.9%). The host range of the Ent. faecalis isolates was limited to dogs, humans, and chickens. Media were developed to isolate and identify Ent. faecalis quickly from fecal samples and this scheme eliminated Ent. faecalis isolates from dogs. When the remaining Ent. faecalis isolates were ribotyped, it was possible to differentiate clearly among the isolates from human and chicken. It may be that combining the potentially limited host range of Ent. faecalis with ribotyping is useful for prioritizing watersheds with fecal contamination.