z-logo
Premium
A Water Balance Study of Four Landfill Cover Designs Varying in Slope for Semiarid Regions
Author(s) -
Nyhan J. W.,
Schofield T. G.,
Starmer R. H.
Publication year - 1997
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq1997.00472425002600050026x
Subject(s) - interflow , loam , environmental science , surface runoff , water balance , hydrology (agriculture) , evaporation , precipitation , capillary action , geotechnical engineering , soil water , groundwater , environmental engineering , soil science , geology , materials science , ecology , biology , meteorology , composite material , physics , thermodynamics
The goal of waste disposal in landfills is to reduce risk to human health by isolating contaminants until they no longer pose a hazard. To achieve this, the performance of a landfill cover design without an engineered barrier (Conventional Design) was compared with designs containing either a hydraulic barrier (USEPA Design) or two capillary barriers (Loam and Clay Loam Capillary Barrier Designs). Water balance parameters were measured at 6‐h intervals for these designs in 1.0 by 10.0 m plots with downhill slopes of 5, 10, 15, and 25%. Whereas runoff generally accounted for only 2 to 3% of the precipitation losses on these designs from December 1991 through July 1995, similar values for evaporation ranged from 86 to 91%. Evaporation usually increased with increases in slope in our field plots; the Conventional Design at slopes of 5 and 25% exhibited 139 and 162 cm of evaporation, respectively. Consequently, interflow and seepage usually decreased with increasing slope: interflow decreased from 10.7 to 1.5 cm for the Clay Loam Capillary Barrier Design at slopes of 5 and 25%. Although seepage comprised up to 10% of the precipitation on the Conventional Design, seepage did not occur in either the USEPA design or the capillary designs at the larger slopes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here