z-logo
Premium
Effects of Ozone and Water Stress, Separately and in Combination, on Soybean Yield
Author(s) -
Miller Joseph E.,
Heagle Allen S.,
Vozzo Steven F.,
Philbeck Robert B.,
Heck Walter W.
Publication year - 1989
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq1989.00472425001800030016x
Subject(s) - irrigation , growing season , moisture stress , water content , sowing , environmental science , moisture , agronomy , crop , yield (engineering) , field experiment , soil water , field capacity , chemistry , biology , soil science , geotechnical engineering , organic chemistry , metallurgy , engineering , materials science
A primary concern in applying existing 0 3 ‐effects data on crop production is the relatively unknown influence of soil moisture, which may modify plant response to 0 3 . One deficiency in field experiments that have tested the influence of soil moisture on crop response to 0 3 has been lack of control of soil moisture conditions in open‐top chamber plots. Most experiments have relied on the occurrence of normal drought periods during the growing season and use of irrigation to adjust soil moisture conditions. This has not allowed the control of the water stress cycles that is desirable. In 1986 a field experiment was performed with soybean [ Glycine max. (L.) Merr. cv. Young] to test the influence of periodic water stress on the yield response to O 3 . Open‐top field chambers were used to expose plants to a range of O 3 concentrations, and rain exclusion caps were used on individual chambers to help regulate soil moisture levels. Three soil moisture treatments were used [well‐watered (WW), waterstressed (WS), and well‐watered with permanent rain exclusion caps that were in place from 35 d after planting until physiological maturity (WW‐C)]. In the WW and WS treatments, the rain caps were put in place only during an exceptionally wet period from mid‐August to mid‐September. The WW and WW‐C treatments had approximately the same yield and response to O 3 , indicating that the presence of the caps for most of the growing season had little effect on growth or sensitivity to O 3 . The WS plots yielded approximately 10% less on the average than the WW and WW‐C plots, but water stress did not change the response to O 3 (i.e., no significant O 3 × water interaction). Based on a Weibull dose‐response model, O 3 reduced yield of ‘Young’ soybean 13% at a concentration of 0.05 µ L L −1 (12 h d −1 seasonal mean) compared to a hypothetical background of 0.02 µ L L −1 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here