Premium
Behavior of Chromium in Soils: III. Oxidation
Author(s) -
Bartlett Richmond,
James Bruce
Publication year - 1979
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq1979.00472425000800010008x
Subject(s) - hexavalent chromium , soil water , chromium , chemistry , environmental chemistry , hydroquinone , electron acceptor , soil science , environmental science , organic chemistry
Abstract Because reduced Cr has been considered to be the stable form in soils, we were surprised to find that added trivalent Cr oxidizes readily to the hexavalent form under conditions prevalent in many field soils. The key to the oxidation appears to be the presence in the soil of oxidized Mn, which serves as the electron acceptor in the reaction. The relative ability of a soil to oxidize Cr may be predicted by measuring Mn reducible by hydroquinone, or it may be determined directly by means of a quick test in which Cr(III) is added to a fresh moist soil sample. Oxidation of Cr by soils was not discovered earlier because the importance of studying fresh field soils, rather than crushed, dried, stored samples, was not appreciated. Plants were severely damaged by Cr(VI) formed from Cr(III) added to fresh soil samples. Hexavalent Cr still was present in a soil stored moist at 25°C for 5 mo.