z-logo
Premium
Crop Residue Management Challenges: A Special Issue Overview
Author(s) -
Clay David E.,
Alverson Ronald,
Johnson Jane M.F.,
Karlen Douglas L.,
Clay Sharon,
Wang Michael Q.,
Bruggeman Stephanie,
Westhoff Shaina
Publication year - 2019
Publication title -
agronomy journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.752
H-Index - 131
eISSN - 1435-0645
pISSN - 0002-1962
DOI - 10.2134/agronj2018.10.0657
Subject(s) - crop residue , environmental science , tillage , soil quality , crop rotation , crop yield , soil carbon , sustainability , agronomy , greenhouse gas , soil health , cover crop , agroforestry , soil organic matter , soil water , crop , agricultural engineering , agriculture , engineering , soil science , biology , ecology
Core Ideas Farmers struggle to maintain and balance economic and environmental sustainability. Identification of knowledge gaps related to crop residue management. Discussion of crop residue manage expanded from the U.S. Midwest to a global perspective. Use of carbon flux tower data to validate simulation models. Crop residue harvesting impacts soil health, productivity, and greenhouse gas emissions.The amount of crop residues that can be sustainability removed is highly variable and is a function of many factors including the soil, climatic, and plant characteristics. For example, leaving an insufficient amount of crop residue on the soil surface can be detrimental for soil quality, result in loss of soil organic matter (SOM), and increase soil erosion, whereas leaving excessive amounts can impair soil‐seed contact, immobilize N, and/or keep soils cool and wet. This special issue evolved as an outcome of, “Crop Residues for Advanced Biofuels: Effects on Soil Carbon” workshop held in Sacramento, CA, in 2017. The goal of the special issue is to provide a forum for identifying knowledge gaps associated with crop residue management and to expand the discussion from a regional Midwestern U.S. to a global perspective. Several crop residue experiments as well as simulation modeling studies are included to examine effects of tillage, crop rotation, livestock grazing, and cover crops on greenhouse gas (GHG) emissions, crop yield, and soil or plant health. The special issue is divided into 4 sections that include (i) Estimating Crop Residue Removal and Modeling; (ii) Cultural Practice Impact on Soil Health; (iii) Residue Removal Impact on Soil and Plant Health; and (iv) Cultural Practice Impact on Carbon Storage and Greenhouse Gas Emissions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here