Premium
Soil Heat Flux Plates: Heat Flow Distortion and Thermal Contact Resistance
Author(s) -
Sauer Thomas J.,
Ochsner Tyson E.,
Horton Robert
Publication year - 2007
Publication title -
agronomy journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.752
H-Index - 131
eISSN - 1435-0645
pISSN - 0002-1962
DOI - 10.2134/agronj2005.0038s
Subject(s) - heat flux , thermal resistance , heat sink , materials science , loam , heat transfer , thermal contact , soil water , composite material , mechanics , thermodynamics , soil science , environmental science , physics
Persistent concern regarding surface energy balance closure encourages increased scrutiny of potential sources of error. Laboratory and field experiments addressed heat flow distortion and thermal contact resistance errors during measurement of soil heat flux ( G ) using the flux plate technique. Steady‐state, one‐dimensional heat flow experiments determined flux plate thermal conductivities (λ m ) and measured the effect of air gaps and thermal heat sink coatings on plate performance. Use of measured instead of manufacturer‐specified λ m and plate dimensions in a heat flow distortion correction improved the consistency but not the average disagreement between imposed sand G and corrected plate heat flux density ( G m ). Consistent underestimates of G in dry sand by 20 to 25% after heat flow distortion correction was attributed to thermal contact resistance effects. A convex air gap 0.1 to 1.32 mm thick across 5.9% of the plate face area reduced G m by up to 9.7%. A thin layer of a thermal heat sink compound with λ 0.18 W m −1 K −1 greater than the plate λ m (1.0 W m −1 K −1 ) did not increase G m in a clay soil but increased G m by ∼6% in quartz sand. A 6.5% increase in G m was also observed for plates treated with the same heat sink compound in a silt loam soil under field conditions. Thermal contact resistance errors are probably <10% in moist, medium‐textured soils and can be minimized by careful plate installation. Relatively greater errors in G m may occur due to thermal contact resistance in dry sand and due to heat flow distortion when soil λ >> λ m