z-logo
Premium
Factors Underlying Yield Variability in Two California Rice Fields
Author(s) -
Roel Alvaro,
Plant Richard E.
Publication year - 2004
Publication title -
agronomy journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.752
H-Index - 131
eISSN - 1435-0645
pISSN - 0002-1962
DOI - 10.2134/agronj2004.1481
Subject(s) - cluster analysis , statistics , data mining , multivariate statistics , cluster (spacecraft) , computer science , stability (learning theory) , fuzzy clustering , sampling (signal processing) , mathematics , machine learning , filter (signal processing) , computer vision , programming language
Modern technologies associated with precision agriculture provide the opportunity to more precisely measure yield variability and the ecological processes underlying this variability. Effective analysis of data from these measurements requires statistical methods different from those traditionally employed on data from controlled agronomic experiments. Our objective was to develop and test multivariate statistical methods appropriate for use in analyzing precision agriculture data. We analyzed a data set taken from two commercial California rice fields and consisting of yield spatial trends together with soil core data from a grid of sample points. We used cluster analysis to discern spatiotemporal patterns in grain yield. We applied a Monte Carlo randomization process to the generation of clusters to analyze cluster stability. We then used classification and regression trees (CART) to determine the factors underlying cluster distribution. The clustering procedure successfully identified stable, physically meaningful clusters with recognizable spatial and temporal structure. Thus, the randomization procedure may present an attractive alternative to fuzzy clustering. The CART analysis identified some but not all of the factors underlying the cluster patterns. The number of available data values may have been too small to take advantage of the CART partitioning capabilities.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here