z-logo
open-access-imgOpen Access
Crustacean Proteases and Their Application in Debridement
Author(s) -
Erick Perera,
Leandro Rodríguez-Viera,
Vivian Montero-Alejo,
Rolando Perdomo-Morales
Publication year - 2020
Publication title -
tropical life sciences research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.313
H-Index - 16
eISSN - 2180-4249
pISSN - 1985-3718
DOI - 10.21315/tlsr2020.31.2.10
Subject(s) - proteases , biology , debridement (dental) , organism , enzyme , protease , proteolytic enzymes , trypsin , digestive enzyme , microbiology and biotechnology , biochemistry , amylase , medicine , genetics , orthodontics
Digestive proteases from marine organisms have been poorly applied to biomedicine. Exceptions are trypsin and other digestive proteases from a few cold-adapted or temperate fish and crustacean species. These enzymes are more efficient than enzymes from microorganism and higher vertebrates that have been used traditionally. However, the biomedical potential of digestive proteases from warm environment species has received less research attention. This review aims to provide an overview of this unrealised biomedical potential, using the debridement application as a paradigm. Debridement is intended to remove nonviable, necrotic and contaminated tissue, as well as fibrin clots, and is a key step in wound treatment. We discuss the physiological role of enzymes in wound healing, the use of exogenous enzymes in debridement, and the limitations of cold-adapted enzymes such as their poor thermal stability. We show that digestive proteases from tropical crustaceans may have advantages over their cold-adapted counterparts for this and similar uses. Differences in thermal stability, auto-proteolytic stability, and susceptibility to proteinase inhibitors are discussed. Furthermore, it is proposed that the feeding behaviour of the source organism may direct the evaluation of enzymes for particular applications, as digestive proteases have evolved to fill a wide variety of feeding habitats, natural substrates, and environmental conditions. We encourage more research on the biomedical application of digestive enzymes from tropical marine crustaceans.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here