
MODELLING WATER EXCHANGE BETWEEN COASTAL ELONGATED LAGOON AND SEA: INFLUENCE OF THE MORPHOMETRIC CHARACTERISTICS OF CONNECTING CHANNEL ON WATER RENEWAL IN LAGOON
Author(s) -
Yurii Tuchkovenkо,
O. A. Tuchkovenko,
V. N. Khokhlov
Publication year - 2019
Publication title -
eureka, physics and engineering./eureka, physics and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.303
H-Index - 5
eISSN - 2461-4262
pISSN - 2461-4254
DOI - 10.21303/2461-4262.2019.00979
Subject(s) - seawater , oceanography , channel (broadcasting) , environmental science , salinity , hydrology (agriculture) , black sea , current (fluid) , eutrophication , geology , ecology , geotechnical engineering , electrical engineering , engineering , nutrient , biology
The north-western part of the Black Sea Ukrainian coast is characterized by the presence of 12 marine lagoons which do not presently have permanent natural connections with the sea. Because of regional climate change, these lagoons have experienced a significant deficit of annual freshwater balance during the last decades and, consequently, an increase in salinity and eutrophication of their waters. One way to stabilize the hydroecological regime of lagoons is to maintain their regular connection with the sea via artificial connecting channels. The deepest and most prolonged Tyligulskyi Liman lagoon is used as an example to determine the morphometric characteristics (width, depth) of the artificial connecting channel which ensures bidirectional water exchange of the lagoon with the sea, i. e. its partial flushing. A numerical hydrodynamic model is used to estimate how the morphometric characteristics of the connecting channel influence the intensity of water exchange between the lagoon and the sea and of water renewal by seawater for the various parts of the lagoon. The dynamics of sea water volume concentration in reference points in the lagoon is used as an indicator of seawater intrusion into the lagoon and their degree of water renewal in its various zones. The proposed methodology could be used for other lagoons of the same type in the north-western part of the Black Sea.