
Impact of orbiting electrode motion on the accuracy of electrical discharge machining
Author(s) -
P. V. Tatanov,
Andrey Yanushkin,
Dmitry Schneider,
Alexander Yanyushkin
Publication year - 2021
Publication title -
vestnik irkutskogo gosudarstvennogo tehničeskogo universiteta
Language(s) - English
Resource type - Journals
eISSN - 2500-1590
pISSN - 1814-3520
DOI - 10.21285/1814-3520-2021-5-559-567
Subject(s) - machining , electrical discharge machining , blanking , mechanical engineering , electrode , trajectory , die (integrated circuit) , machine tool , materials science , engineering , physics , quantum mechanics , astronomy
The present study is designed to study processes occurring during the electrical discharge machining (EDM) of tool steels, the influence of orbiting electrode motion on its accuracy, as well as to justify the application of individual orbiting trajectories and implement these data into production. To that end, a trajectory program was written in machine codes for a Mitsubishi EA-28 die-sinking electrical discharge machine using the CIMCO EDIT software package. Also, a prototype punch and ejector of the blanking die were produced and measured. The standard modes of Mitsubishi EA-28 were used to carry out machining in Blasospark GT 250 dielectric fluid to a roughness of Ra 0.6 in 9 passes. The experiments revealed the influence of electrode geometry on the machining of sharp corners, i.e., the formation of unwanted radii on the workpiece. However, this phenomenon is not observed when the corners are drilled with small diameter holes (0.4–0.6 mm). Depending on the machining process along the inner or outer trajectory, inverse electrode motion is also observed. The production part (punch of the blanking die) was machined using a new orbit adjusted to the geometry of the product. The part was found to be consistent with the requirements and the engineering drawing, thus allowing the assembled die to enter the main production. The results of the performed tests, as well as the study of domestic and foreign experience, were used to develop recommendations on the use of individual orbits in the EDM of tool steels, hard alloys, and other hard-to-machine conductive materials. The method of orbiting motion along a particular trajectory was implemented at Cheboksary Electrical Apparatus Plant (Cheboksary).