
Use of a phase-shifting transformer for increasing the power transmission capacity, taking into account the mode of the adjacent network
Author(s) -
V. P. Shoiko,
K. V. Dukhanina
Publication year - 2021
Publication title -
vestnik irkutskogo gosudarstvennogo tehničeskogo universiteta
Language(s) - English
Resource type - Journals
eISSN - 2500-1590
pISSN - 1814-3520
DOI - 10.21285/1814-3520-2021-3-369-379
Subject(s) - transformer , quadrature booster , electrical engineering , electric power transmission , limiting , transmission line , engineering , installation , three phase , energy efficient transformer , distribution transformer , electronic engineering , voltage , mechanical engineering
In this research, we develop measures aimed at improving the efficiency of power systems by increasing their transmission capacity. To this end, a FACTS system based on the phase-shifting transformer with a thyristor switch developed at the Power Engineering Institute named after G.M. Krzhizhanovsky was used. The efficiency of the phaseshifting transformer under study for increasing the transmission capacity of power systems was determined by the maximum permissible cross-section flows of the Barnaul-Biysk node-2. The calculations were performed for normal and various post-accident schemes using the RastrWin3 software package. Such factors as the regulation of the taps of the phase-shifting transformer and various places of its installation were considered. For the section under consideration, the phase-shifting transformer increased the maximum permissible flow by 4–12%. The determining factor limiting the maximum permissible flow in the Barnaul-Biysk node-2 was found to be the current overload of the 110 kV lines of the adjacent network. The greatest effect of increasing the maximum permissible overflow was noted when the phase-shifting transformer was installed on the 220 kV line adjacent to the section, parallel to the 110 kV lines (which were overloaded when the mode became heavier), rather than on the 220 kV line included in the section. Similar calculations were performed for normal and post-accident schemes of an alternative option, which involved replacing wires and installing automatic equipment for limiting equipment overload on overloaded 110 kV lines. The obtained results show that the effect of increasing the transmission capacity for this option comprised 4%.