
Elution Profile of Di-peptides on a Sulfonated Ethylstyrene-Divinylbenzene Copolymer Resin Column by High-performance Liquid Chromatography
Author(s) -
Jian Xia Guo,
Tomomi Saiki,
Thanutchaporn Kumrungsee,
Wanying Liu,
Akihiro Shimura,
Toshiro Matsui
Publication year - 2015
Publication title -
analytical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.392
H-Index - 73
eISSN - 1348-2246
pISSN - 0910-6340
DOI - 10.2116/analsci.31.45
Subject(s) - chemistry , copolymer , divinylbenzene , chromatography , elution , isoelectric focusing , high performance liquid chromatography , isoelectric point , methanol , column chromatography , phosphate , polymer , organic chemistry , styrene , enzyme
This study investigates the characteristics of a partially sulfonated ethylstyrene-divinylbenzene copolymer for the separation of di-peptides by high-performance liquid chromatography. Di-peptides (VE, VA, VH, VK, and VR) with different isoelectric points (pI, 4.0 to 9.7) and log P values (-1.63 to -0.72) were used to optimize the separation conditions of the columns packed with sulfonated copolymer resin. The retention factor (k) of the di-peptides on the column with a 0.81 wt% sulfo group content decreased with increasing concentrations of phosphate salts (2.5 - 20 mmol L(-1)) in the mobile phase. The complete separation of the five di-peptides was obtained with a gradient of 10% methanol containing 5 mmol L(-1) NaH2PO4 (pH 4.8) to 50% methanol containing 5 mmol L(-1) Na2HPO4 (pH 8.9) for 60 min at 0.5 mL min(-1) at 50°C. Under the optimal conditions, a good relationship between the k and pI values of the di-peptides, with the exception of VE (pI 4.0), was observed, suggesting that the retention of the di-peptides on the column packed with sulfonated copolymer resin was dependent on the pI value, when it was greater than 5. The log P value also influenced the separation characteristics of the column; peptides possessing the same pI value (6.4 for GH, VH, IH, and FH) showed a higher retention on the column with increasing log P values. In conclusion, the prototype sulfonated ethylstyrene-divinylbenzene copolymer column was applicable for the separation of basic di-peptides, and the separation depended on the pI and hydrophobicity of the di-peptides.