
Projective MDS Codes Over GF(27)
Author(s) -
Emad Bakr Al-Zangana
Publication year - 2021
Publication title -
mağallaẗ baġdād li-l-ʿulūm
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.167
H-Index - 6
eISSN - 2411-7986
pISSN - 2078-8665
DOI - 10.21123/bsj.2021.18.2(suppl.).1125
Subject(s) - generator matrix , code (set theory) , projective test , discrete mathematics , mathematics , computer science , linear code , combinatorics , arithmetic , block code , pure mathematics , programming language , algorithm , decoding methods , set (abstract data type)
MDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix. In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over . Also, two complete PG-MDS codes over of length and 28 have been found.