
Exponential Function of a bounded Linear Operator on a Hilbert Space.
Author(s) -
Baghdad Science Journal
Publication year - 2014
Publication title -
mağallaẗ baġdād li-l-ʿulūm
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.167
H-Index - 6
eISSN - 2411-7986
pISSN - 2078-8665
DOI - 10.21123/bsj.11.3.1267-1273
Subject(s) - exponential function , mathematics , bounded operator , operator (biology) , multiplication operator , operator space , hilbert space , quasinormal operator , weak operator topology , bounded function , finite rank operator , spectrum (functional analysis) , pure mathematics , compact operator , shift operator , mathematical analysis , physics , computer science , banach space , quantum mechanics , biochemistry , chemistry , repressor , transcription factor , extension (predicate logic) , gene , programming language
In this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.