z-logo
open-access-imgOpen Access
Аnalysis Catalytic Hydrogen Recombiner Capacity Calculation Taking into Account Conditions Inside Sealed Enclosure of Containment Safety System of Nuclear Power Plants with Water-Water Energetic Reactor
Author(s) -
В. B. Сорокин
Publication year - 2021
Publication title -
izvestiâ vysših učebnyh zavedenij i ènergetičeskih obʺedinennij sng. ènergetika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.333
H-Index - 6
eISSN - 2414-0341
pISSN - 1029-7448
DOI - 10.21122/1029-7448-2021-64-2-178-186
Subject(s) - nuclear power plant , nuclear engineering , hydrogen , environmental science , cabin pressurization , enclosure , nuclear power , coolant , atmosphere (unit) , loss of coolant accident , waste management , chemistry , oxygen , materials science , mechanical engineering , meteorology , nuclear physics , physics , engineering , composite material , telecommunications , organic chemistry
Localizing safety systems are provided to contain radioactive substances in an accident and attenuate ionizing radiation at a modern nuclear power plant. Together with radioactive substances, hydrogen is also retained, which is formed during the decomposition of the primary coolant. The accumulation of hydrogen in the presence of oxygen from the atmosphere in the accident localization zone carries the danger of the formation of flammable and explosive concentrations of these components. Nuclear power plant (NPP) deigns with water-water energetic reactor (WWER) provides for a hydrogen removal system including passive catalytic hydrogen recombiners. The device capacity  is confirmed experimentally under reference conditions (lean air-hydrogen mixture, pressure and temperature close to normal, no interference with gas exchange). Capacity is an important safety parameter. In the event of an accident, conditions inside the ealed enclosure of the localizing system of NPP with WWER can  differ from the reference  ones and affect the capacity.  On the basis of calculations, the operation of recombiners with lack of  oxygen  and with hindered  gas exchange has been investigated in the paper. The decrease in capacity with lack of oxygen reaches 50 %, which is mainly  caused by an increase in underburning. Compared to the reference conditions, the effect is more pronounced in the event of an accident – 60–70 %. The hindered gas exchange is modeled by a decrease in the height of recombiner traction channel. This case can be reduced to the placement of the device in cramped conditions and the effect of the atmosphere speed inside the enclosure. Regardless of the hydrogen concentration, the operating characteristic of the device remains linear, with a two-fold decrease in height leads to a decrease in capacity by 20 %. The results can be used to substantiate the safety of NPPs with WWER and to review on the safety subtantiation of power units.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here