
CIRCUIT-DESIGN SOLUTIONS AND INFORMATION SUPPORT OF CITY ELECTRIC NETWORKS IN THE CONDITIONS OF THE SMART GRID
Author(s) -
М. И. Фурсанов
Publication year - 2017
Publication title -
izvestiâ vysših učebnyh zavedenij i ènergetičeskih obʺedinennij sng. ènergetika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.333
H-Index - 6
eISSN - 2414-0341
pISSN - 1029-7448
DOI - 10.21122/1029-7448-2017-60-5-393-406
Subject(s) - smart grid , grid , computer science , restructuring , distributed generation , reliability (semiconductor) , electric power , smart city , distributed computing , process (computing) , photovoltaic system , power (physics) , engineering , electrical engineering , renewable energy , embedded system , physics , geometry , mathematics , finance , quantum mechanics , economics , internet of things , operating system
The structure, circuit-design solutions and information support of the city electric networks in the conditions of the SMART GRID have been analyzed. It is demonstrated that the new conditions of functioning of electric power engineering, increasing demands for its technological state and reliability in most countries determined the transition to a restructuring of electrical networks to be based on the SMART GRID (intelligent power networks) innovative new structure. The definitions of the SMART GRID, its various attributes and characteristics in most developed countries including Belarus are presented. It is revealed that the existing and future circuit and constructive solutions that can automate the process of managing modes of urban electric networks under the SMART GRID conditions are manifold. At present, the most common in distribution networks are the sources of distributed generation (combustion turbines, wind turbines, photovoltaic installations, mini-hydro, etc.). The patterns and problems of information traceability of a traditional urban networks of the unified energy system of Belarus have been analyzed, and it is demonstrated that in the conditions of the SMART GRID most of the problems of the control mode that are characteristic for traditional distribution networks 6–10 kV and 0.38 kV, lose their relevance. Therefore, the present article presents and features the main directions of development of automatic control modes of the SMART GRID.