z-logo
open-access-imgOpen Access
Peranan Zat Pengatur Tumbuh dalam Perbanyakan Tanaman melalui Kultur Jaringan
Author(s) -
Endang Gati Lestari
Publication year - 2011
Publication title -
jurnal agrobiogen/jurnal agrobiogen
Language(s) - English
Resource type - Journals
eISSN - 2549-1547
pISSN - 1907-1094
DOI - 10.21082/jbio.v7n1.2011.p63-68
Subject(s) - cytokinin , picloram , auxin , kinetin , regulator , shoot , callus , dicamba , plant growth , acetic acid , growth regulator , chemistry , biology , horticulture , tissue culture , biochemistry , agronomy , in vitro , weed control , gene
The Role of Growth Regulator in Tissue Culture Plant Propagation. Endang G. Lestari. In plant tissue culture, growth regulator has significant roles such as to control root and shoot development in the plant formation and callus induction. Cytokinin and auxin are two prominent growth regulator. Cytokinin consists of BA (benzil adenin), kinetin (furfuril amino purin), 2-Ip (dimethyl allyl amino purin), and zeatin. While auksin covers IAA (indone acetic acid), NAA (napthalene acetic acid), IBA (indole butiric acid) 2.4-D (2.4- dicholophenoxy acetic acid), dicamba (3,6 dicloro-O-anisic acid), and picloram (4-amino 3,5,6-tricloropicolinic acid). The emphasis of plant growth purposes decide the use of growth regulator. Cytokinin is applied mainly for the purpose of shoot, while auxin is mainly used for the purpose of root and callus. The application of growth regulator application is varied, depending on the genotype and physiological condition of the plant. The existence of a certain growth regulating substances can enhance growth regulator activity of other substances. The type and concentration of the appropriate growth regulators for each plant is not the same because it depends on the genotype and physiological condition of plant tissue. However so often both are frequently required depend on the ratio/ratio of auxin cytokines or vice versa. The existence of a certain growth regulating substances can enhance growth regulator activity of other substances. The type and concentration of the appropriate growth regulators for each plant is not the same because it depends on the genotype and physiological condition of plant tissue. For the propagation, multiple and adventive shoots along with embriosomatic formation could be applied. The seedling is obtained from one somatic cell. Here, strong auxin, such as dicamba and picloram 2.4-D, is utilized for callus production. For this reason, seedling per unit could be produced more than that of organogenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here