Assessment of Genetic and Nongenetic Interactions for the Prediction of Depressive Symptomatology: An Analysis of the Wisconsin Longitudinal Study Using Machine Learning Algorithms
Author(s) -
Nicholas S. Roetker,
C. David Page,
James A. Yonker,
Vicky C. Chang,
Carol Roan,
Pamela Herd,
Taissa S. Hauser,
Robert M. Hauser,
Craig Atwood
Publication year - 2013
Publication title -
american journal of public health
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.284
H-Index - 264
eISSN - 1541-0048
pISSN - 0090-0036
DOI - 10.2105/ajph.2012.301141
Subject(s) - logistic regression , psychology , machine learning , clinical psychology , population stratification , single nucleotide polymorphism , computer science , biology , genetics , genotype , gene
We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom