
Near-infrared autofluorescence in thyroid and parathyroid surgery
Author(s) -
Aimee N. Di Marco,
Fausto Palazzo
Publication year - 2020
Publication title -
gland surgery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 22
eISSN - 2227-8575
pISSN - 2227-684X
DOI - 10.21037/gs.2020.01.04
Subject(s) - medicine , thyroidectomy , hypoparathyroidism , thyroid , autofluorescence , parathyroidectomy , hypocalcaemia , endocrine system , surgery , parathyroid hormone , hormone , calcium , physics , quantum mechanics , fluorescence
Contrast-free autofluorescence (AF) of the parathyroid glands (PTGs) and thyroid tissue occurs in the near-infrared (NIR) spectrum on excitation by light in the upper range of the visible spectrum or lower NIR spectrum. In vivo , PTGs autofluoresce more brightly than thyroid (by a factor of 2-20 times) and appear as a bright spot against surrounding thyroid, muscle or fat on a processed image which is generated in real-time. NIR-AF of PTGs was first described in 2009 although NIR-AF had previously been used in several other clinical applications. Since then there has been a great amount of interest in the use of NIR-AF in thyroid and parathyroid surgery with over 25 published reports of the utilisation of both self-built and proprietary NIR-AF devices in neck endocrine surgery. All of these reports have confirmed the feasibility of NIR-AF intraoperatively and its ability to detect PTGs, although the reported accuracy varies from 90-100%. Reports of the effect of NIR-AF on relevant clinical endpoints i.e., post-operative hypoparathyroidism in thyroidectomy and persistent disease in parathyroidectomy are however scant. There has been one multicentre clinical trial of NIR-AF in thyroidectomy but this did not report clinical outcomes and two single-centre, non-randomised studies which did report post-operative hypoparathyroidism but with differing results: one showing no benefit in 106 NIR-AF vs . 163 controls and one, a reduction of early hypocalcaemia from 20% to 5% in 93 NIR-AF patients vs . 420 controls. There were only 2 cases of permanent hypoparathyroidism across both studies and therefore no significant observable difference in this key outcome variable. In parathyroidectomy, possible variability of the AF signal due to composition of a PTG adenoma, secondary/tertiary disease and MEN1 as well as depth-penetration preventing detection of sub-surface PTGs would imply that NIR-AF in its current form is not well-placed to improve cure-rates in hyperparathyroidism, which may already be as high as 98%. Thus far, no study has addressed this. Despite the promising results of NIR-AF, the absence of data demonstrating an improvement in outcomes and the cost of its use currently limit its use in routine clinical practice, especially in a publicly funded healthcare system with budgetary constraints. However, it can be utilised in research settings and this should be undertaken within the context of well-designed and conducted randomised, multi-centre, appropriately powered studies, which will assist in establishing its role in neck endocrine surgery.