
Kinerja Algoritma Kmeans++ pada Pengelompokkan Dokumen Teks Pendek pada Abstrak di Jurusan Teknik Elektro Fakultas Teknik UNJ
Author(s) -
Catur Rahma Sistiani,
Widodo Widodo,
Bambang Prasetya Padhi
Publication year - 2018
Publication title -
pinter : jurnal pendidikan teknik informatika dan komputer
Language(s) - Italian
Resource type - Journals
ISSN - 2597-4475
DOI - 10.21009/pinter.2.1.6
Subject(s) - physics
Pengelompokkan pada dokumen teks pendek masih sulit ini dikarenakan di sparsity kata. Tujuan penelitian ini adalah untuk mengetahui kinerja algoritma k-means++ pada teks pendek dan untuk mengetahui proses pengelompokkan algoritma k-means++ pada tekspendek di abstrak skripsi Jurusan Teknik Elektro Fakultas Teknik UNJ dilaksanakan padasemester genap tahun ajaran 2014-2015. Penelitian ini menggunakan metode penelitianeksperimen. Data abstrak yang digunakan sebanyak 200 abstrak. Penelitian meneliti 4 datayaitu Data pertama adalah abstrak ilmiah di jurusan Teknik Elektro, Universitas NegriJakarta pada paragraf 1 sampai paragraf 3. Data kedua adalah paragraf 1 pada abstrakilmiah di jurusan Teknik Elektro, Universitas Negri Jakarta. Data ketiga adalah paragraf 2pada abstrak ilmiah di jurusan Teknik Elektro, Universitas Negri Jakarta. Data keempatadalah paragraf 3 pada abstrak ilmiah di jurusan Teknik Elektro, Universitas Negri Jakarta.Pengujian kinerja algoritma k-means++ menggunakan matrix confusion. Berdasarkan hasilpenelitian, didapatkan kesimpulan bahwa keakurasian pada abstrak, paragraf 1 di abstrak,paragraf 2 di abstrak, dan paragraf 3 di abstrak mencapai lebih dari 80% . Didapatkan jugakesesuaian antar data yang diprediksi dengan hasil yang benar dari data yangsebenarnya(presisi) pada abstrak, paragraf 1 di abstrak, paragraf 2 di abstrak, dan paragraf3 di abstrak mencapai lebih dari 50% . Didapatkan juga peluang munculnya data relevanyang diambil sesuai dengan query (recall) pada abstrak, paragraf 1 di abstrak, paragraf 2 diabstrak, dan paragraf 3 di abstrak mencapai lebih dari 80%.