Open Access
Features of CЕС technology for eco- and energytechnologies
Author(s) -
Мykola Sakhnenko,
Ann Karakurkchi,
Tetiaenastina,
Irina Yermolenko,
Alla Korohodska
Publication year - 2021
Publication title -
vìsnik nacìonalʹnogo tehnìčnogo unìversitetu "hpì". novì rìšennâ v sučasnih tehnologìâh/vestnik nacionalʹnogo tehničeskogo universiteta "hpi". novye rešeniâ v sovremennyh tehnologiâh
Language(s) - English
Resource type - Journals
eISSN - 2413-4295
pISSN - 2079-5459
DOI - 10.20998/2413-4295.2021.03.13
Subject(s) - modular design , electrolysis , electrolyte , process engineering , coating , process (computing) , materials science , production (economics) , computer science , nanotechnology , chemistry , engineering , electrode , operating system , economics , macroeconomics
Based on the analysis of the peculiarities of CEC formation, it is shown that their production and application is one of the world trends in functional electroplating and allows to solve a number of practical problems, in particular in the field of eco- and energy technologies. The deposition of polyfunctional CECs of cobalt with refractory metals was carried out from citrate-pyrophosphate electrolytes in galvanostatic and pulsed modes. The obtained composite coatings have a complex of increased mechanical and anti-corrosion properties, catalytic and photocatalytic activity, which determines the prospects for the use of the obtained thin-film materials in many industries. It is shown that the processes of formation of such multicomponent systems are very complex, a separate problem that needs to be solved is the organization of the technological process of CEC adapted to production needs. The scheme of organization of technological process on the basis of the modular approach which is based on results of complex researches of influence of quantitative characteristics of working electrolytes and modes of electrolysis on structure and properties of the synthesized coverings is developed. The generalized scheme of CEC technology reflects the sequence of generally accepted processes and operations in electrochemical production with the possibility of applying the modular principle of organization of galvanic sites and shops. Variability of technological schemes provides flexible control of the composition and properties of coatings by changing the time and energy characteristics of electrodeposition with insignificant adjustment of the quantitative and qualitative composition of electrolytes. The developed modular approach in the organization of technological process can be used as a basis for other electrochemical technologies of synthesis of functional materials.