
Mechanisms of structural-phase transformations during crystallization of solder melt under conditions of magnetic-dynamic influences for carbide tools
Author(s) -
Anatoliy Kuzey,
Владимир Лебедев,
Pavel Tsykunov,
Andrey Slipchuk
Publication year - 2021
Publication title -
vìsnik nacìonalʹnogo tehnìčnogo unìversitetu "hpì". novì rìšennâ v sučasnih tehnologìâh/vestnik nacionalʹnogo tehničeskogo universiteta "hpi". novye rešeniâ v sovremennyh tehnologiâh
Language(s) - English
Resource type - Journals
eISSN - 2413-4295
pISSN - 2079-5459
DOI - 10.20998/2413-4295.2021.03.06
Subject(s) - materials science , soldering , metallurgy , copper , alloy , microstructure , dissolution , brazing , zinc , nickel , crystallization , composite material , chemistry , organic chemistry
The processes of melt formation were studied by methods of optical and electron scanning microscopy. These processes occur during induction brazing of a hard alloy to a steel holder and contact interaction of low-melting (copper-zinc system alloy) and refractory (iron-nickel) components of the solders. It is shown that the effect of a thermal and magnetic-dynamic high-frequency electromagnetic field on the components of the composite solder is how a high-strength solder joint is formed. The structure is forming by disperse hardening mechanism. The research of the contact interaction process for low-melting and high-melting components of solders during the soldering process of the tool showed that the formation of solder in brazed seams occurs through a number of stages and this does not lead to the formation of microstructures that are characteristic of alloys based on copper-iron-phosphorus, copper-zinc-nickel and copper-zinc-iron. Thus, the use of composite solders can reduce the soldering temperature by 40-50 K and increase the concentration of alloying species in the solder and change its structure. These advantages of composite solders reduce the thermal impact on contact materials, increase the strength of the weld and allow you to control the thickness of the brazed weld, and this is important when soldering hard alloys of WC-TiC (TaC) systems. High initial dissolution rates of nickel particles in the copper-zinc melt and the solubility of copper, zinc in nickel lead to the formation in the melt of quasi-liquid particles of the nickel alloy. When the melt is cooled, particles other than the surrounding alloy composition are formed. They are morphologically related to the grain structure of the solder. The formed alloy (solder) has the structure of a composite material in which the metal particles are enriched in nickel, and have the role of a reinforcing element.