
Parametric optimization of magnetoelectric generator with double stator
Author(s) -
Anna Lykhohub,
Mykhailo Kovalenko,
Ihor Tkachuk,
Anton Goncharyk
Publication year - 2021
Publication title -
vestnik nacionalʹnogo tehničeskogo universiteta "hpi". problemy soveršenstvovaniâ èlektričeskih mašin i apparatov
Language(s) - English
Resource type - Journals
eISSN - 2411-0604
pISSN - 2079-3944
DOI - 10.20998/2079-3944.2021.1.06
Subject(s) - stator , generator (circuit theory) , parametric statistics , parametric design , matlab , magnet , computer science , finite element method , geometric modeling , software , control theory (sociology) , mechanical engineering , engineering , structural engineering , mathematics , physics , power (physics) , statistics , control (management) , quantum mechanics , artificial intelligence , programming language , operating system
A methodology for the optimization-parametric calculation of geometric parameters of the design of an axial-flux permanent magnet generator has been developed. The developed methodology can be used to calculate and optimize geometric parameters in an automated mode for almost any type of electromechanical energy converter. The operation of the developed system is based on the interconnections between the computer-aided design system, software package, and numerical calculation of the electromagnetic field with the possibility of feedback and parameterization and a computing environment such as Matlab. The parameterized geometric model is constructed on the example of an axial-flux permanent magnet generator with a double stator. Subsequently, parametric optimization of geometric parameters was performed using the developed algorithm. The use of the developed solution reduces the time spent by the researcher on the calculation of geometry and optimization. Parameterization is performed at all stages of construction of a single part, the geometry of which is planned to change, and in each part of the assemblies if any in a particular case. That is, with the help of the developed model, it is possible to program the optimization of both a separate structural element of the studied system and the object as a whole. In the process of optimization, the main geometrical parameters of the investigated end generator with double side changed: stator yoke, air gap, gear-groove zone of the stator, housing elements. As a result of parametric optimization of the geometry of the prototype, it was possible to reduce the geometric dimensions by optimizing the magnitude of the magnetic induction in some areas of the magnetic core of the studied generator. Due to the application of the developed algorithm, it was possible to reduce the cost of the generator, as well as the volume of the magnetic circuit by 18.1% and 24.3%, respectively. This indicates the effectiveness of the developed algorithm and the possibility of using this algorithm in further research