
Environmental Response Sensors Produced Using Bilayer-Type Organic Semiconductors
Author(s) -
Shunto Arai
Publication year - 2022
Publication title -
journal of robotics and mechatronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 19
eISSN - 1883-8049
pISSN - 0915-3942
DOI - 10.20965/jrm.2022.p0257
Subject(s) - bilayer , stacking , materials science , thin film transistor , organic semiconductor , semiconductor , transistor , optoelectronics , layer (electronics) , active layer , nanotechnology , membrane , chemistry , electrical engineering , organic chemistry , biochemistry , engineering , voltage
In this study, we developed environmental gas sensors based on bilayer-type organic semiconductors. The number of stacked molecular bilayers was controlled through a solution-based approach. In particular, single molecular bilayers (SMBs) were produced through a geometrical frustration method that can effectively suppress the multiple stacking of bilayers. The layer number-controlled films were utilized to form thin-film transistors (TFTs) to detect the moisture in the air. We revealed that the sensitivity was enhanced in the SMB-based TFTs compared with the TFTs with thicker active layers. These findings are expected to facilitate a new route for producing flexible and lightweight chemical sensors.