
Biomimetic Soft Wings for Soft Robot Science
Author(s) -
Hiroto Tanaka,
T. Nakata,
Takahiro Yamasaki
Publication year - 2022
Publication title -
journal of robotics and mechatronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 19
eISSN - 1883-8049
pISSN - 0915-3942
DOI - 10.20965/jrm.2022.p0223
Subject(s) - flapping , biomimetics , propulsion , wing , aerodynamics , robot , aerospace engineering , soft robotics , mechanism (biology) , robustness (evolution) , wing twist , stiffness , engineering , computer science , simulation , mechanical engineering , structural engineering , angle of attack , artificial intelligence , physics , biochemistry , chemistry , quantum mechanics , gene
Flight and swimming in nature can inspire the design of highly adaptive robots capable of working in complex environments. In this letter, we reviewed our work on robotic propulsion in the air and water, with a specific focus on the crucial functions of elastic components involved in the driving mechanism and flapping wings. Elasticity in the driving mechanism inspired by birds and insects can enhance both the aerodynamic efficiency of flapping wings and robustness against disturbances with appropriate design. A flapping wing surface with a stiffness distribution inspired by hummingbirds was fabricated by combining tapered spars and ribs with a thin film. The biomimetic flexible wing could generate more lift than the nontapered wing with a similar amount of power consumption. Underwater flapping-wing propulsion inspired by penguins was investigated by combining the 3-degree-of-freedom (DoF) flapping mechanism and hydrodynamic calculation, which indicates that wing bending increases the propulsion efficiency. This work demonstrates the importance of passive deformation of both wing surfaces and driving mechanisms for improving the fluid dynamic efficiency and robustness in flight and swimming, as well as providing biological insight from an engineering perspective.