
Characteristics of Pneumatic Artificial Rubber Muscle Using Two Shape-Memory Polymer Sheets
Author(s) -
Kazuto Takashima,
Daiki Iwamoto,
Shun Oshiro,
Toshiro Noritsugu,
Toshiharu Mukai
Publication year - 2021
Publication title -
journal of robotics and mechatronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 19
eISSN - 1883-8049
pISSN - 0915-3942
DOI - 10.20965/jrm.2021.p0653
Subject(s) - artificial muscle , actuator , bending , materials science , pneumatic actuator , natural rubber , shape memory polymer , shape memory alloy , mechanical engineering , computer science , artificial intelligence , composite material , engineering
We have developed a pneumatic artificial rubber muscle having a bending direction that can be changed using two shape-memory polymer (SMP) sheets, the stiffness of which depends on the temperature. In the present study, we attached two SMP sheets with embedded electrical heating wires to both sides of a pneumatic artificial rubber muscle in order to realize multidirectional actuation and evaluated the basic characteristics of the artificial muscle. The actuator is based on the design of a conventional curved-type artificial rubber muscle. Since only a heated SMP sheet becomes soft, the rigid SMP sheet inhibits the extension of the side of the actuator. Therefore, bending motion can be induced when air is supplied to the internal bladder. By controlling the temperature of the SMP sheets, the bending direction of the prototype actuator could be changed. Namely, three kinds of motions, such as two-directional bending and axial extension, became possible. Moreover, we improved the manufacturing method and the structure of the artificial muscle, such as the stitching method and the SMP sheet thickness, and evaluated the characteristics of the two-directional bending and the axial extension motions of the prototype actuator. We also calculated the theoretical values and compared these values with the experimental results. Furthermore, we examined the application of the actuators to a robot hand. Using the two-directional motion of the actuator, the proposed robot hand can grasp either small or large objects. The experimental results conducted using this prototype confirm the feasibility of the newly proposed actuator.