
Pose Estimation of Swimming Fish Using NACA Airfoil Model for Collective Behavior Analysis
Author(s) -
Hitoshi Habe,
Yoshiki Takeuchi,
Kei Terayama,
Masaaki Sakagami
Publication year - 2021
Publication title -
journal of robotics and mechatronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 19
eISSN - 1883-8049
pISSN - 0915-3942
DOI - 10.20965/jrm.2021.p0547
Subject(s) - airfoil , naca airfoil , computer science , artificial intelligence , particle filter , fish <actinopterygii> , computer vision , simulation , marine engineering , kalman filter , engineering , fishery , aerospace engineering , meteorology , geography , reynolds number , turbulence , biology
We propose a pose estimation method using a National Advisory Committee for Aeronautics (NACA) airfoil model for fish schools. This method allows one to understand the state in which fish are swimming based on their posture and dynamic variations. Moreover, their collective behavior can be understood based on their posture changes. Therefore, fish pose is a crucial indicator for collective behavior analysis. We use the NACA model to represent the fish posture; this enables more accurate tracking and movement prediction owing to the capability of the model in describing posture dynamics. To fit the model to video data, we first adopt the DeepLabCut toolbox to detect body parts (i.e., head, center, and tail fin) in an image sequence. Subsequently, we apply a particle filter to fit a set of parameters from the NACA model. The results from DeepLabCut, i.e., three points on a fish body, are used to adjust the components of the state vector. This enables more reliable estimation results to be obtained when the speed and direction of the fish change abruptly. Experimental results using both simulation data and real video data demonstrate that the proposed method provides good results, including when rapid changes occur in the swimming direction.