
Forecast of the Pyroclastic Volume by Precursory Seismicity of Merapi Volcano
Author(s) -
Masato Iguchi,
Haruhisa Nakamichi,
Kuniaki Miyamoto,
Masaki Shimomura,
I Gusti Made Agung Nandaka,
Agus Budi-Santoso,
Sulistiyani,
Nurnaning Aisyah
Publication year - 2019
Publication title -
journal of disaster research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.332
H-Index - 18
eISSN - 1883-8030
pISSN - 1881-2473
DOI - 10.20965/jdr.2019.p0051
Subject(s) - volcano , pyroclastic rock , seismology , geology , induced seismicity , tectonics , earthquake swarm
We propose a method to evaluate the potential volume of eruptive material using the seismic energy of volcanic earthquakes prior to eruptions of Merapi volcano. For this analysis, we used well-documented eruptions of Merapi volcano with pyroclastic flows (1994, 1997, 1998, 2001, 2006, and 2010) and the rates and magnitudes of volcano-tectonic A-type, volcano-tectonic B-type, and multiphase earthquakes before each of the eruptions. Using the worldwide database presented by White and McCausland [1], we derived a log-linear formula that describes the upper limit of the potential volume of erupted material estimated from the cumulative seismic energy of distal volcano-tectonic earthquakes. The relationship between the volume of pyroclastic material and the cumulative seismic energy released in 1994, 1997, 1998, 2001, 2006, and 2010 at Merapi volcano is well-approximated by the empirical formula derived from worldwide data within an order of magnitude. It is possible to expand this to other volcanic eruptions with short (< 30 years) inter-eruptive intervals. The difference in the intruded and extruded volumes between intrusions and eruptions, and the selection of the time period for the cumulative energy calculation are problems that still need to be addressed.