
Machine Learning Based Building Damage Mapping from the ALOS-2/PALSAR-2 SAR Imagery: Case Study of 2016 Kumamoto Earthquake
Author(s) -
Yanbing Bai,
Bruno Adriano,
Erick Mas,
Shunichi Koshimura
Publication year - 2017
Publication title -
journal of disaster research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.332
H-Index - 18
eISSN - 1883-8030
pISSN - 1881-2473
DOI - 10.20965/jdr.2017.p0646
Subject(s) - synthetic aperture radar , event (particle physics) , remote sensing , computer science , geology , artificial intelligence , physics , quantum mechanics
Synthetic Aperture Radar (SAR) remote sensing is a useful tool for mapping earthquake-induced building damage. A series of operational methodologies based on SAR data using either multi-temporal or only post-event SAR images have been developed and used to serve disaster activities. This presents a critical problem: which method is more likely to obtain reliable results and should be adopted for disaster response when both pre- and post-event SAR data are available? To explore this question, this study takes the 2016 Kumamoto earthquake as a case study. ALOS-2/PALSAR-2 SAR images were employed with a machine learning framework to quantitatively compare the performance of building damage mapping using only post-event SAR images and mapping using multi-temporal SAR images. The results show that an overall accuracy of 64.5% was achieved when only post-event SAR images were used, which is 2.3% higher than the overall accuracy when multi-temporal SAR images were used. The estimated building damage ratio for the former and the latter are 29.7% and 31.1%, respectively, which are both close to the building damage ratio obtained from an optical image.