
Optimization of Nano-Topography Distribution by Compensation Grinding
Author(s) -
Naoki Yoshihara,
AUTHOR_ID,
Masahiro Mizuno
Publication year - 2022
Publication title -
international journal of automation technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.513
H-Index - 18
eISSN - 1883-8022
pISSN - 1881-7629
DOI - 10.20965/ijat.2022.p0032
Subject(s) - waviness , grinding , polishing , compensation (psychology) , materials science , smoothness , nano , nanometre , optics , point (geometry) , composite material , geometry , mathematics , physics , psychology , mathematical analysis , psychoanalysis
Optical surfaces are required to have high form accuracy and smoothness. The form accuracy must be below 50 nm. Form accuracy is currently on the order of several tens of nanometers or less; however, further improvement is required. To improve form accuracy, compensation grinding is performed based on form measurement results. However, when the form error is small, a small periodical waviness occurs on the ground surface, which is known as nano-topography. This waviness cannot be compensated for using conventional compensation methods because the nano-topography distributions are not reproducible. A previous study showed that grinding conditions affect the spatial frequency of nano-topography. Therefore, in this study, optimum grinding conditions are estimated from the view point of nano-topography distributions, and the grinding conditions are compensated to optimize these distributions.