
Vibration Mode and Motion Trajectory Simulations of an Articulated Robot by a Dynamic Model Considering Joint Bearing Stiffness
Author(s) -
Ryuta Sato,
Yuya Ito,
Shigeto Mizuura,
Keiichi Shirase
Publication year - 2021
Publication title -
international journal of automation technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.513
H-Index - 18
eISSN - 1883-8022
pISSN - 1881-7629
DOI - 10.20965/ijat.2021.p0631
Subject(s) - vibration , robot , stiffness , engineering , kinematics , control theory (sociology) , machining , trajectory , modal analysis , control engineering , joint stiffness , bearing (navigation) , computer science , mechanical engineering , simulation , structural engineering , finite element method , artificial intelligence , acoustics , control (management) , physics , astronomy , classical mechanics
Articulated robots are widely used in industries because they can perform manufacturing tasks with complicated movements. Higher speed and accuracy of motions are always required to improve the quality and productivity of products. The vibration characteristics of the robots are an important factor to achieve higher speed and accuracy motions. Robots are increasingly being used for machining. The vibration characteristics must also be considered when designing proper cutting conditions for the machining. To design control and cutting strategies for higher speed and accuracy motions or higher productivity of the machining process, it is effective to investigate the vibration characteristics of the robot and develop a mathematical model which can represents the vibration characteristics. The aim of this study is to investigate the vibration characteristics of an architectural robot and develop a mathematical model which can represent the dynamic behavior of the robot. To achieve this, vibration mode of an industrial architectural robot is analyzed based on measured frequency characteristics. According to the results of the modal analysis, it was clarified that the axial and angular stiffness of bearings of each joint of the robot has a significant impact on the vibration characteristics. Therefore, in this study, a mathematical model of the robot is developed considering the joint bearing stiffness. The mathematical model that also considers the kinematics of the robot, stiffness of reduction gears, control system for motors, and disturbance, such as friction and gravity, is introduced into the model. The control system is precisely modeled based on actual control algorithm in accordance with the implemented source codes. Although mass and inertia of the links are obtained from the 3D-CAD model, stiffness and damping parameters of the bearings and reduction gears are identified by matching the measured and simulated frequency responses. It has been confirmed that the model can adequately represents the vibration mode of the actual robot. Circular motion tests were performed to verify the model. Motion trajectories of the end effector were measured and simulated. As a result, it has been confirmed that the developed model is effective to analyze the dynamic behaviors.