z-logo
open-access-imgOpen Access
Perbandingan Metode Klasifikasi pada Pengolahan Citra Mata Ikan Tuna
Author(s) -
Toni Dwi Novianto,
I Made Susi Erawan
Publication year - 2020
Publication title -
prosiding snfa (seminar nasional fisika dan aplikasinya)
Language(s) - English
Resource type - Journals
eISSN - 2548-8325
pISSN - 2548-8317
DOI - 10.20961/prosidingsnfa.v5i0.46615
Subject(s) - artificial intelligence , rgb color model , mathematics , fish <actinopterygii> , computer science , grayscale , pattern recognition (psychology) , computer vision , image (mathematics) , fishery , biology
Fish eye color is an important attribute of fish quality. The change in eye color during the storage process correlates with freshness and has a direct effect on consumer perception. The process of changing the color of the fish eye can be analyzed using image processing. The purpose of this study was to obtain the best classification method for predicting fish freshness based on image processing in fish eyes. Three tuna fish were used in this study. The test was carried out for 20 hours with an eye image every 2 hours at room temperature. Fish eye image processing uses Matlab R.2017a software while the classification uses Weka 3.8 software. The image processing stages are taking fish eye image, segmenting ROI (region of interest), converting RGB image to grayscale, and feature extraction. Feature extraction used is the gray-level co-occurrence matrix (GLCM). The classification techniques used are artificial neural networks (ANN), k-neighborhood neighbors (k-NN), and support vector machines (SVM). The results showed the value using ANN = 0.53, k-NN = 0.83, and SVM = 0.69. Based on these results it can be determined that the best classification technique is to use the k-nearest neighbor (k-NN). Abstrak: Warna mata ikan merupakan atribut penting pada kualitas ikan. Perubahan warna mata ikan selama proses penyimpanan berhubungan dengan tingkat kesegaran dan memiliki efek langsung pada persepsi konsumen. Proses perubahan warna mata ikan dapat dianalisis menggunakan pengolahan citra. Tujuan penelitian ini adalah mendapatkan metode klasifikasi terbaik untuk memprediksi kesegaran ikan berbasis pengolahan citra pada mata ikan. Tiga ekor ikan tuna digunakan dalam penelitian ini. Pengujian dilakukan selama 20 jam dengan pengambilan citra mata setiap 2 jam pada suhu ruang. Pengolahan citra mata ikan menggunakan software matlab R.2017a sedangkan pengklasifiannya menggunakan software Weka 3.8. Tahapan pengolahan citra meliputi pengambilan citra mata ikan, segmentasi ROI ( region of interest ), konversi citra RGB menjadi grayscale , dan ekstraksi fitur. Ekstraksi fitur yang digunakan yaitu gray-level co-occurrence matrix (GLCM).  Teknik klasifikasi yang digunakan yaitu, artificial neural network (ANN), k-nearest neighbors (k-NN), dan support vector machine (SVM). Hasil penelitian menunjukkan nilai korelasi menggunakan ANN = 0,53, k-NN = 0,83, dan SVM = 0,69. Berdasarkan hasil tersebut dapat disimpulkan teknik klasifikasi terbaik adalah menggunakan k-nearest neighbors (k-NN).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here