
The minimal length case of the Klein Gordon equation with hyperbolic cotangent potential using Nikivorof-Uvarof Method
Author(s) -
Isnaini Lilis Elviyanti,
Ahmad Syukron
Publication year - 2020
Publication title -
journal of physics
Language(s) - English
Resource type - Journals
eISSN - 2549-7324
pISSN - 2549-7316
DOI - 10.20961/jphystheor-appl.v4i1.40669
Subject(s) - klein–gordon equation , hyperbolic function , span (engineering) , mathematics , trigonometric functions , eigenvalues and eigenvectors , mathematical analysis , function (biology) , mathematical physics , class (philosophy) , energy (signal processing) , physics , geometry , quantum mechanics , computer science , statistics , civil engineering , nonlinear system , evolutionary biology , artificial intelligence , engineering , biology
The case of minimal length is applied for the Klein Gordon equation with hyperbolic cotangent potential. The Klein Gordon equation for minimal length case is solved used to approximate solution. The energy eigenvalue and wave function are investigated by the Nikivorof-Uvarof method.