
The Primitive-Solutions of Diophantine Equation x^2+pqy^2=z^2, for primes p,q
Author(s) -
Aswad Hariri Mangalaeng
Publication year - 2022
Publication title -
jurnal matematika, statistika dan komputasi/jurnal matematika statistik dan komputasi
Language(s) - English
Resource type - Journals
eISSN - 2614-8811
pISSN - 1858-1382
DOI - 10.20956/j.v18i2.19018
Subject(s) - diophantine equation , mathematics , diophantine set , discrete mathematics , combinatorics
In this paper, we determine the primitive solutions of diophantine equations x^2+pqy^2=z^2, for positive integers x, y, z, and primes p,q. This work is based on the development of the previous results, namely using the solutions of the Diophantine equation x^2+y^2=z^2, and looking at characteristics of the solutions of the Diophantine equation x^2+3y^2=z^2 and x^2+9y^2=z^2.