z-logo
open-access-imgOpen Access
Modification alpha formalism of Shakura–Sunyaev for the coefficient of turbulent viscosity in an astrophysical disk of finite thickness
Author(s) -
А. В. Колесниченко
Publication year - 2022
Publication title -
preprint/preprinty ipm im. m.v. keldyša
Language(s) - English
Resource type - Journals
eISSN - 2071-2901
pISSN - 2071-2898
DOI - 10.20948/prepr-2022-1-e
Subject(s) - physics , turbulence , magnetic field , mechanics , compressibility , classical mechanics , magnetohydrodynamics , computational physics , quantum mechanics
In the approximation of one-fluid hydrodynamics, a closed system of Favre-averaged magneto-hydrodynamic equations is formulated, intended for the numerical simulation of compressible turbulent flows of electrically conductive media in the presence of a magnetic field. Special emphasis is paid to the method of obtaining, within the framework of irreversible thermodynamics, the constitutive relations for the turbulent flux heat and the total (kinetic plus magnetic) tensor of turbulent stresses. A new approach to modeling the coefficient of turbulent kinematic viscosity for an astrophysical disk is proposed, which takes into account the influence of an external and generated magnetic field, as well as the processes of convective heat transfer on turbulence in a stratified layer of finite thickness, and thereby modifies the Shakura–Sunyaev alpha formalism developed by for a thin disk and widely used in the astrophysical literature.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here