
On a new method for regularizing equations two-phase incompressible fluid
Author(s) -
A. V. Ivanov,
Matvey Kraposhin,
Т. Г. Елизарова
Publication year - 2021
Publication title -
preprint/preprinty ipm im. m.v. keldyša
Language(s) - English
Resource type - Journals
eISSN - 2071-2901
pISSN - 2071-2898
DOI - 10.20948/prepr-2021-61
Subject(s) - compressibility , regularization (linguistics) , finite volume method , numerical analysis , mathematics , mechanics , mathematical analysis , computer science , physics , artificial intelligence
This paper presents a new method for the numerical simulation of two-phase incompressible immiscible flows. The methodology is based on the hydrodynamic equations regularization method using the quasi-hydrodynamic approach. Two systems of regularized equations are developed, which differ in terms of velocity regularization. The comparison of the described equations systems and the approbation of the numerical model on two numerical tests are given: dam break problem with the bottom step, for which the experimental data are described (Koshizuka’s experiment), and the cubic drop evolution problem. The latter problem is a model one with artificially specified parameters that demonstrates the effects of surface tension. A numerical model of two-phase flows is implemented in the open-source platform OpenFOAM using the finite volume method.