
Two-layer finite-difference schemes for the Korteweg-de Vries equation in Euler variables
Author(s) -
V. I. Mazhukin,
A. V. Shapranov,
Eleikolaevna Bykovskaya
Publication year - 2020
Publication title -
mathematica montisnigri
Language(s) - English
Resource type - Journals
eISSN - 2704-4963
pISSN - 0354-2238
DOI - 10.20948/mathmontis-2020-49-5
Subject(s) - mathematics , crank–nicolson method , finite difference , euler's formula , approximation error , stability (learning theory) , type (biology) , korteweg–de vries equation , finite difference method , soliton , mathematical analysis , euler equations , layer (electronics) , physics , nonlinear system , quantum mechanics , computer science , ecology , machine learning , biology , chemistry , organic chemistry