z-logo
open-access-imgOpen Access
Properties of carbon fiber made of metallized tapes
Author(s) -
В.А. Нелюб,
А. А. Берлин
Publication year - 2019
Publication title -
vestnik voronežskogo gosudarstvennogo universiteta inženernyh tehnologij
Language(s) - English
Resource type - Journals
eISSN - 2310-1202
pISSN - 2226-910X
DOI - 10.20914/2310-1202-2019-1-303-309
Subject(s) - materials science , composite material , coating , thermal conductivity , electrical resistivity and conductivity , sputtering , titanium , copper , sputter deposition , carbon fibers , epoxy , metallurgy , thin film , composite number , nanotechnology , electrical engineering , engineering
Technological advancement in the development of carbon fiber-reinforced polymer (CFRP) composites has become a priority today as their field of application is ever increasing; this task requires expanding the range of their properties, including higher thermal and physical characteristics, which allows gaining the competitive edge of products. Insufficient research and trial infrastructure is retarding development of novel technologies aimed at controlling functional properties of CFRPs. In this regard, a method has been suggested allowing directional control of CFRP thermal and electrical conductivity through the use of metal-coated carbon bands. Experimental results concerning mechanical, thermal and physical properties of CFRPs manufactured from metal-coated carbon bands and epoxy binder using vacuum infusion process have been shown. Magnetron sputtering process has been developed to deposit metal coatings on carbon bands; plasma support gas pressure, discharge current and sputtering time have been defined. Stainless steel, titanium, copper, zinc, aluminum alloy and silver have been used as metal coating materials. Metal coating thickness values have been defined using structural analysis methods, with thickness values of about 100 nm. It has been found that strength at interlaminar shear improves by 32, 39 and 13%, when titanium, stainless steel and copper, respectively, are deposited on carbon band. Research has experimentally proven that carbon band metallization results in lower heat absorption capacity, lower electrical conductivity and higher thermal conductivity of CFRPs. The maximum effect has been obtained when using copper coating, which allowed increasing thermal conductivity virtually by 2 times and decreasing electrical conductivity value by 2.5 times. The results obtained have been used in the development of CFRPs with a functional set of properties.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here