z-logo
open-access-imgOpen Access
Investigation of the effect of beef moisture content on the amount of bound moisture with the calorimetric method
Author(s) -
Ю. М. Березовский,
И. А. Королев,
И. В. Агафонкина,
Taras A. Sarantsev
Publication year - 2019
Publication title -
vestnik voronežskogo gosudarstvennogo universiteta inženernyh tehnologij
Language(s) - English
Resource type - Journals
eISSN - 2310-1202
pISSN - 2226-910X
DOI - 10.20914/2310-1202-2018-4-25-29
Subject(s) - water content , moisture , differential scanning calorimetry , enthalpy , chemistry , thermodynamics , glass transition , mass fraction , atmospheric temperature range , phase (matter) , bound water , organic chemistry , physics , geotechnical engineering , engineering , polymer , molecule
With the development of food processing and storage at near-cryoscopic temperatures, more and more attention is being paid to the development of methods for frozen out moisture and cryoscopic temperature calculating based on their component composition data. There is a significant dispersion among the existing experimental data of various researchers and calculation methods for beef thermophysical properties. In the study given, the authors determined the enthalpy of phase transitions, beet heat capacity with different moisture content and its cryoscopic temperature with the method of differential scanning calorimetry. With the analysis of the phase transitions enthalpy, it was found out that the share of non-freezing water for beef is n = 0.35 (g of water per 1 g of dry matter). The presence of the vitreous phase in the temperature range of about -85 ° С was established, most noticeably manifested when the moisture content of the samples is w = 37–45.8%, which indicates the formation of amorphous solutions in the process of food products freezing. Beginning of moisture melting peak Tm.b. takes place at temperatures range from -35 ° C till -25 ° C for the samples with low and normal moisture content respectively. Acccording to the theoretical Heldman ratio, a dependence for cryoscopic temperature calculating was proposed . The given semi-empirical dependences of the phase transitions enthalpy and the frozen moisture fraction provide an increase in the accuracy of calculations at low values of moisture content in the product. The research results can be used as input data in mathematical modeling of heat exchange processes and the development of calculating methods for the thermophysical properties of food products based on their composition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here