z-logo
open-access-imgOpen Access
PELABELAN TOTAL TAK REGULER PADA BEBERAPA GRAF
Author(s) -
Nugroho Arif Sudibyo,
Siti Komsatun
Publication year - 2018
Publication title -
jurnal ilmiah matematika dan pendidikan matematika (jmp)/jurnal ilmiah matematika dan pendidikan matematika
Language(s) - English
Resource type - Journals
eISSN - 2550-0422
pISSN - 2085-1456
DOI - 10.20884/1.jmp.2018.10.2.2840
Subject(s) - combinatorics , vertex (graph theory) , mathematics , graph , neighbourhood (mathematics) , simple graph , mathematical analysis
For a simple graph G with vertex set V (G) and edge set E(G), a labeling $\Phi:V(G)\cup U(G)\rightarrow\{1,2,...k\}$ is  called  a  vertex  irregular  total  k- labeling of G if for any two diferent vertices x and y, their weights wt(x) and wt(y) are distinct.  The weight wt(x) of a vertex x in G is the sum of its label and the labels of all edges incident with the given vertex x.  The total vertex irregularity strength of G, tvs(G), is the smallest positive integer k for which G has a vertex irregular total k-labeling.  In this paper, we study the total vertex irregularity strength of some class of graph.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here