
KARAKTERISTIK OPERATOR HIPONORMAL-p PADA RUANG HILBERT
Author(s) -
Gunawan Gunawan
Publication year - 2014
Publication title -
jurnal ilmiah matematika dan pendidikan matematika (jmp)/jurnal ilmiah matematika dan pendidikan matematika
Language(s) - English
Resource type - Journals
eISSN - 2550-0422
pISSN - 2085-1456
DOI - 10.20884/1.jmp.2014.6.2.2909
Subject(s) - isometry (riemannian geometry) , quasinormal operator , hilbert space , mathematics , compact operator on hilbert space , operator theory , nuclear operator , operator (biology) , pure mathematics , operator norm , fourier integral operator , compact operator , finite rank operator , computer science , chemistry , banach space , biochemistry , repressor , transcription factor , extension (predicate logic) , gene , programming language
This article discusses the definition and properties of p-hiponormal operators for p>0. To investigate the properties of p-hiponormal operators, the concept of positive operators, partial isometry operators, decomposition of operators, and existence of partial isometry operators for any operator on a Hilbert space are required.