
HUBUNGAN ANTARA NILAI KRITIS DERIVATIF- F^\alpha DENGAN DIMENSI-\gamma DARI SUATU KURVA
Author(s) -
Supriyadi Wibowo
Publication year - 2012
Publication title -
jurnal ilmiah matematika dan pendidikan matematika (jmp)/jurnal ilmiah matematika dan pendidikan matematika
Language(s) - English
Resource type - Journals
eISSN - 2550-0422
pISSN - 2085-1456
DOI - 10.20884/1.jmp.2012.4.1.2959
Subject(s) - dimension (graph theory) , mathematics , fractal dimension , function (biology) , rank (graph theory) , derivative (finance) , mathematical analysis , alpha (finance) , critical point (mathematics) , combinatorics , fractal , statistics , evolutionary biology , financial economics , economics , biology , construct validity , psychometrics
Continue function that defined on fractal set is a function which has irregular structure, that can not be an ordinary differentiable on F. In this paper will be explored the correlation between critical point of the derivatif with dimension- of a curve. By using the properties of the derivative , Holder’s continue function in rank of and dimension , has been obtained the correlation between critical value of derivative and the dimension of a curve.